
TECCD: A Tree Embedding Approach for Code
Clone Detection

Yi Gao∗, Zan Wang∗, Shuang Liu∗, Lin Yang∗, Wei Sang∗ and Yuanfang Cai†
∗ College of Intelligence and Computing, Tianjin University, † Drexel University

Abstract—Clone detection techniques have been explored for
decades. Recently, deep learning techniques has been adopted
to improve the code representation capability, and improve the
state-of-the-art in code clone detection. These approaches usually
require a transformation from AST to binary tree to incorporate
syntactical information, which introduces overheads. Moreover,
these approaches conduct term-embedding, which requires large
training datasets. In this paper, we introduce a tree embedding
technique to conduct clone detection. Our approach first conducts
tree embedding to obtain a node vector for each intermediate
node in the AST, which captures the structure information of
ASTs. Then we compose a tree vector from its involving node
vectors using a lightweight method. Lastly Euclidean distances
between tree vectors are measured to determine code clones. We
implement our approach in a tool called TECCD and conduct
an evaluation using the BigCloneBench (BCB) and 7 other large
scale Java projects. The results show that our approach achieves
good accuracy and recall and outperforms existing approaches.

Index Terms—Code Clone Detection; AST; Skip-gram;

I. INTRODUCTION

Code clone, which usually refers to copying-and-pasting

a piece of code with some modifications, is a common

coding practice in software engineering. While code clones

may increase the development speed, they also have adverse

impacts [16], [50], such as introducing maintenance prob-

lems [49] and even bugs which are hard to detect [41].

Although it has been reported that clones may not always

be harmful [32], it is worthwhile for developers to detect

code clones. For example, code clones have been shown to

be useful for software refactoring [47], [48], and source code

comprehension [49], [55].

Code clones are classified into 4 types based on the degree

of changes in the code. Type-1, Type-2 clones reflect textural

changes; Type-3 clones capture syntactic similarities in pro-

gram code [17]; Type-4 clones refer to semantic (functional)

similarities [23]. Various approaches [30], [28], [35], [23],

[51], [56], [40], [66] have been proposed to detect code

clones. These approaches are mainly classified into 5 cate-

gories [57], i.e., text-based method, token-based method, tree-

based method, graph-based method and metric-based method.

More details on the related works can be found in section VI.

Type-1 and Type-2 clone detections [28] [30], [21] have

been well studied. It has been reported that there are more

Type-3 clones than other types in the repositories [58]. There-

fore, in our work, we focus on Type-3 clone detection. The

most popular Type-3 clone detection techniques [13] include

Shuang Liu is the corresponding author

token-based [28], [61], Tree-based [29] techniques. Recently

machine learning-based [69], [40] techniques have been pro-

posed to detect Type-3 clones.

Token-based methods [28], [61] parse source code into

tokens, then some kind of index is built for searching similar

blocks [61]. Tree-based methods [29], [16] utilize parse trees

or Abstract Syntax Trees (AST) to capture code structure

information. After that, subtrees are searched to detect code

clones. Token-based methods are efficient, but not very effec-

tive in detecting Type-3 clones [28], especially for large scale

modifications. Tree-based methods, on the other hand, have

demonstrated better effectiveness in detecting Type-3 clones,

but suffer from efficiency problems [29] , and thus are difficult

be applied to large projects [54].

Recently, with the rapid development of machine learning

techniques, there have been approaches [69], [40] proposed to

use deep learning methods to conduct code clone detection.

However, these approaches learn representations from tokens

or terms, they cannot detect the cases where the source code

is heavily modified textually, but the main structure remains,

as shown by the code clone example in Fig. 1. The example

is obtained from the jEdit project [1]. The PhysDown
function scrolls down the cursor by the given number of lines.

The PhysUp function scrolls up the cursor. Similar cases

where similar functionalities (with similar implementations)

are copied and modified, are common practices in software

development. We’ve observed many such cases in our experi-

ment. There are in total 12 lines (highlighted in red in Fig. 1)

of modifications from the method in Fig. 1a to obtain the

method in Figure. 1b. The scale of the changes (in terms of

insertion, deletion and modifications) is more than half of the

code size. However, if we check the main structures of the two

pieces of code as squared in blue rectangles in Fig. 1), they

are highly similar. Both methods have 4 if-else control

structures, each of which controls similar program logic. This

is a typical Type-3 clone. However, it cannot be detected by

state-of-the-art clone detection tools, such as CCAligner [66],

CCLearner [40] and Nicad [56].

In this paper, we aim to address this problem. Our goal is

to improve the effectiveness (measured in terms of precision

and recall) of Type-3 clone detection, and in the meantime,

maintain the efficiency of detection. Inspired by the successful

application of estimating word representations in vector space,

we propose to convert ASTs into vectors and detect clones

based on the distances between those vectors.

White et al. [69] proposed to map code fragments into

145

2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSME.2019.00025

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

(a) Type-3 clone example (source) (b) Type-3 clone example (target)

Fig. 1: Type-3 clone example

continuous-valued vectors with machine learning techniques

to capture “context” information in the source code. This

approach shares similar idea with our approach. However, the

vector embedding is conducted on lexical level which makes

it dependent on project-specific keywords, and a large training

dataset is required to mitigate this effect. Moreover, time

consuming operations such as conversion from a parse tree

to a binary tree, and RNN-based tree encoding are conducted.

The basic idea of our work is to use AST to capture pro-

gram structure information, then convert AST into continuous

valued vectors through tree embedding. After that, a vector

distance is calculated to measure the similarity of methods.

We adopt a light-weight embedding approach to obtain the

AST vector from its node vectors, which is more efficient

compared to RNN-based approaches [69]. Unlike existing

approach [69] which uses project-specific terms to train deep

learning models, our work does not use lexical information

in the learning process, which makes the trained node vector

representation generally applicable across projects.

The contributions of our work are three-fold.

• We propose a tree embedding approach to detect Type-3

clones. Our approach is light-weight compared to existing

approaches that adopt embeddings to represent codes.

• We implement our approach in a tool called TECCD ,

which is available in [2].

• We conduct thorough evaluations on 6 large-scale Java

projects and the BigCloneBench. We compare our ap-

proach with 3 state-of-the-art approaches on all those

datasets. The evaluation results show that our approach

outperforms the state-of-the-art methods in clone detec-

tion effectiveness. Our approach also shows a comparable

detection time with existing approaches, and is much

more efficient than existing tree-based approach.

The remaining of the paper is organized as following.

Section II provides preliminary knowledge related to our work.

Section III introduces our approach in detail. We report the

implementation and evaluation of our approach in detail in

Section IV. Section VI discusses related works for code clone

detection. Finally, we conclude our paper in Section VII.

II. PRELIMINARY

A. Category of Code Clones
Code clone generally refers to copying-and-pasting a piece

of code with a certain level of modifications. In literature,

cloned code has been further divided into four types [57],

[54]. We verbally describe the four types of clones that are

widely adopted in the community as follows:

146

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

• Type-1 Clone: Code fragments are identical except for

small changes in white space, layout, and comments.

• Type-2 Clone: Code fragments are structurally and syn-

tactically identical except for variations in identifiers,

literals, types, layout and comments.

• Type-3 Clone: On the basis of Type-1 and Type-2,

there are other changes to the copied segment, such as

modification, insertion or deletion of statements.

• Type-4 Clone: Code fragments are semantically similar,

i.e., perform similar functions, but are syntactically dif-

ferent.

Among the 4 types of clones, Type-1, Type-2, Type-3 are

syntax-based code clone. Type-4 is semantic-based code clone,

which means the codes perform similar funcitonalities but

have different syntactical structures [59]. To the best of our

knowledge, there are no quantitative or formal definitions of

different clone types. Especially for Type-3 clones, to what

extend the modifications are allowed is not clear. Expert

evaluations are commonly adopted to decide real clone pairs.

B. Skip-gram

Skip-gram [45] is a popular language model based on neural

network to conduct word embedding task, which maps a

word to a low-dimensional vector. The resulting word vectors

contain rich semantic information in terms of context. Each

word vector in the Skip-gram model represents the distribution

of the context. Due to the efficiency in model training and the

ability to capture rich semantic information [53], the Skip-

gram model has been widely adopted in Natural Language

Processing (NLP) tasks. Compared to natural language, pro-

gramming languages are not ambiguous and has less context

changes. Therefore, we adopt the Skip-gram model to obtain

AST node-vector embeddings for Java programs.

C. Node2vec

Inspired by the word-embedding techniques in the natural

language processing domain, Grover and Leskovec [26] pro-

posed an approach called node2vec, in which a mapping of

nodes to a space of features, which maximize the likelihood

of preserving network node neighbourhoods, is learnt. In this

way, node2vec represents nodes in a network graph as vectors

(of continuous features). Different from sentences, network

does not show a linear structure. Therefore the sliding window

technique, used to capture context in natural language, is

not applicable to network structures. In classical searching

strategies, Breath-First-Search (BFS) and Depth-First-Search

(DFS) are commonly used to capture two extreme scenarios.

DFS captures the homophily equivalence relationship and

BFS captures the structural relationship. A network usually

exhibit both behaviours and thus a proper combination of

BFS and DFS is necessary to capture the context of each

node. To capture the “context” information in a network,

node2vec proposed to use random walk, which tries to balance

the searching priority between BFS and DFS through two

proposed parameters (Return and In-out parameter), to capture

the diverse neighbourhoods, and thus “context” information of

a network graph. The evaluation shows that it can capture the

homophily and structural relationship of nodes in a graph.

III. OUR APPROACH

In this section, we present the main steps of our clone

detection approach. The initial idea is to detect code clones

based on code structure information, and at the same time,

avoid the time consuming tree-based searching algorithms. To

achieve this goal, we first convert source code into an Abstract

Syntax Tree (AST), which contains code structure information.

After that, we map an AST to a vector based on deep learning

techniques and compare the Euclidean distance [19] of the

vectors to detect code clones. We also implement our approach

in a the clone detection tool called TECCD , which is

available on our GitHub project [2]. Following existing clone

detection approaches, such as NICAD [56], CCLearner [40]

and CloneManager [33], our approach focuses on detecting

code clones at the method level since method is the basic unit

of software implementation and reuse.

Fig. 2 illustrates the overview of our approach, which

includes a pre-processing step and three main steps. The pre-

processing step generates a node-vector dictionary for AST

nodes. The dictionary acts as the basis to convert an AST

into a vector. The main process starts with generating an AST

for each method, based on which a set of nodes for the AST

is obtained (Step 1); then we convert the AST into a vector

through sentence embedding [14] (Step 2); lastly we compute

and compare the distance of the vectors to detect code clones

(Step 3). In the remaining of this section, we introduce each

of the above steps in detail.

A. Pre-processing

The details of the pre-processing step are shown in Fig. 2.

First, we use ANTLR [3] to generate one AST for each

method in the training corpus. Then we conduct a filtering

step to remove the stop nodes, which we will describe in

detail shortly. After the filtering step, we conduct a random

walk [26] on each AST to obtain a set of node sequences for

each AST. The idea is motivated by node2vec [26], in which a

fix-length random walk is used to capture the neighbourhood

relations of nodes in a graph. The obtained node sequences

capture the structure information of the AST. Lastly, we use

the node sequences obtained for all methods in the corpus

to train a skip-gram model [4] and generate a node-vector

dictionary, where the node name is used as index for querying

the corresponding vector.

Obtain context information One of our main ideas is to con-

vert an AST into a vector to improve the efficiency of the tree-

based clone detection process. In particular, the Skip-gram [4]

algorithm is adopted for the node embedding process. Skip-

gram is successfully applied in natural language processing

tasks to capture the context information of a sentence, where

each sentence is truncated into a set of fixed length phrases

(based on the windows size) and each word in a sentence

is converted into a vector. Our problem is different from the

task in natural language, where natural language sentences are

147

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The overall approach

in sequential structures and the context can be represented

in sequential format, i.e., phrases. However, AST is not a

sequential structure. Therefore, to enable embedding on an

AST, we need to be able to obtain the “context” information

of an AST in sequential format effectively.

Traditional approaches to traverse a tree structure include

Breadth-First Search (BFS) and Depth-First Search (DFS).

Each of the searching methods can provide a sequential

representation of a tree. BFS produces sequences in which

brother nodes are neighbours with each other, while DFS

produces sequences where parent-children nodes are next to

each other. Let’s take Fig. 3 as a running example. Fig. 3a is

a Java method, Fig. 3b is the AST generated for the method1.

Fig. 3c shows example node sequences obtained through

random walk on the AST of Fig. 3b. In Fig. 3, the nodes

expression, statement, which are brother nodes of

each other2, are children of the IfThenStatement node.

This structure can be obtained from one step derivation of the

Java grammar rule ifThenStatement → ’if’ ’(’
expression ’)’ statement. BFS is good at capturing

the local structures of a complex expression/statement,

such as the ifThenStatement. While DFS is good at

capturing relatively simple, yet sequential derivations. For

example, in Fig. 3b, the node sequence expression,
assignmentExpression, postfixExpression,
literal (in the dotted rectangle) represents the stepwise

derivation (according to ANTLR Java 8 Grammar) of a

method parameter and all (single) argument occurrences have

the same sequence (parsed with ANTLR). This sequence acts

as a context information for the AST structure.

From the above analysis, we observe that both BFS and

DFS provide sequences that are useful to capture the struc-

ture/context of an AST. However, none of them can provide

sufficient context information. Therefore, we conduct a ran-

dom walk [26], which combines both BFS and DFS searching

order, on an AST to obtain the context information. Inspired

1We remove the method declaration for the simplicity of illustration.
2Our approach does not consider leaf nodes.

by the random walk algorithm proposed in [26], in which a

fix-length random walk is used to capture the neighbourhood

relations of nodes in a graph, we propose to conduct a random

walk on AST. Since the original algorithm is developed for

graphs, it cannot be directly applied to AST. The difference is

that for trees, there is no explicit edges between brother nodes

and no circles either. However, the random walk algorithm

in [26] requires explicit edges to conduct BFS-like traversal.

Therefore, in our approach, we modify the AST slightly to add

directed edges between brother nodes. For example, the dashed

arrow from blockStatement to blockStatement in

Fig. 3b is the added transition to enable BFS-like traversal

with random walk. We modify the random walk algorithm

in [26] to accommodate the tree structures.

Random Walk Formally, given a source node u, each node

in a fixed length random walk (starting from u) is generated

with the following distribution [26]:

P (ci = x|ci−1 = v) =

{
πvx

Z if(v, x) ∈ E

0 otherwise
(1)

where l is the fixed length, 1 ≤ i ≤ l, c0 = u, v is the current

node and x is the next node to visit. E is the set of edges

in the tree. We modify the 2nd order random walk transition

probability (from [26]) to adjust to tree structures. Formally,

πvx = αpq(t, x) and

αpq(t, x) =

{
1
p ifdtx = 1
1
q ifdtx = 2

(2)

Consider a random walk has just traversed edge (t, v) and is

currently at node v. The algorithm decides the next node x to

visit based on the value of dtx, which represents the shortest

path distance between nodes t and x and the value must be

one of {0, 1, 2}. Different from graphs, there is no such cases

where dtx = 0 (which indicates a backward traversal on the

graph) in a tree. Therefore, we only consider the cases where

dtx = 1 or dtx = 2. dtx = 1 indicates that t and x are parent-

child relation, which also indicate that v and x are brother

148

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

public void source (){
if (arg1>0){

timer . stop (true) ;
}
if (arg2>0){

timer = null ;
}else{
}

}

(a) An example Java method

[blockStatements , blockStatement , blockStatement , statement ,
ifThenElseStatement , expression , statementNoShortIf ,
StatementWithoutTrailingSubstatement , block ,

blockStatements];
[blockStatement , statement , ifThenStatement , expression ,

statement , StatementWithoutTrailingSubstatement , block ,
blockStatements , blockStatement , statement];

[statement , ifThenStatement , expression ,
assignmentExpression ,

postfixExpression , literal]

(c) Random Walk Node Sequences

(b) An example AST (for the Java method)

Fig. 3: A running example

nodes. dtx = 2 indicates that v and x are parent-child relation.

The parameters p, q controls the likelihood of conducting

BFS-like and DFS-like searches. In particular, p controls the

probability of conducting BFS-like search, and q controls the

probability of conducting DFS-like search. In our experiment,

we do not have preference on either BFS-like or DFS-like

search, therefore we set p = q.

Fig. 3c illustrates three example node sequences (with

maximum length set to 10 for clear illustration) generated for

the AST in Fig. 3b through our random walk algorithm3. Each

generated node sequence contains a mixed brother-brother,

parent-child relations. In this way, our approach converts a tree

structure into a sequential structure, and meanwhile maintains

(to some extend) the original tree structure information. After

the random walk on an AST, a set of node sequences are

obtained , which represent the context information of interme-

diate nodes in an AST. We take the obtained node sequences

as input to train the skip-gram model.

We chose 7 popurlar open source Java project, i.e.,

JDK1.8 [5], Ant 1.10.1 [6], Commons Lang-3.3.7 [7], jEdit

5.4.0 [1], JDK 1.2.2 [5], Maven 3.5.0 [8] and OpenNLP

3The stop nodes are removed

1.8.1 [9], as training corpus projects to train a Skip-gram

model and obtain the node-vector dictionary. These projects

all have large code bases and cover a large diverse of different

coding styles. Note that the node-vector dictionary generation

is one-time effort, i.e., once the dictionary is generated, any

Java project is able to reuse the dictionary. This is achievable

since our approach only considers the non-leaf nodes of an

AST for the vector generation. Recall that the non-leaf nodes

of an AST capture structure information of the program, and

are project-independent. The project-specific information, such

as the variable name, is represented as leaf node in AST and

is not considered for node vector generation in our approach.

Results of Context Information Capturing We explicitly

analysed the results of node embedding through context in-

formation obtained through random walk on AST. We are

interested in understanding how random walk on AST can

capture the structural context of an AST. By a simple visu-

alization using TSNE [27], we can observe that AST nodes

with similar context (in terms of random walk node sequences)

are embedded into vectors of small distances. Such exam-

ples include the tryStatement (166), catches (167),

catchClause (168), catchFormalParameter (169),

149

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

catchType (170) and finally (171). These nodes always

co-appear in the tryStatement subtree and thus sharing similar

“context” (father-child, brother-brother) nodes. Therefore, the

resulting node embedding vectors have small distances with

each other. On the other hand, AST nodes with different

contexts are embedded into vectors of larger distances. This

results indicate that the node vectors obtained actually capture

the context information of a tree. Therefore, we are able

to use the obtained vectors to conduct structure-based clone

detection.

Stop Nodes AST tends to have a huge number of nodes

as introduced for proper parsing purposes and it is rather

time consuming to process. ANTLR is designed to gen-

erate 237 types of nodes in total, among which there

are intermediate nodes that appear frequently in AST, but

do not differentiate the code structures. For example, the

derivation sequence from an expression node to the spe-

cific term is expression, assignmentExpression,
postfixExpression,... (as shown in Figure 3b).

Nodes in this sequence always have similar context (random

walk always provides the same sequences), and thus they have

similar vectors after node embedding. However, these nodes

are redundant and do not contribute to distinguish different tree

structures. Through a manual checking on the parsing results

of 7 large Java projects, we found that there are in total 55
such kind of intermediate nodes which are useful for parsing,

but are not useful for differentiating code structures. We refer

this kinds of nodes as the stop nodes4, and filter these nodes

in our approach to improve clone detection accuracy.

B. Step 1: Generate Tree-Node Set

The first step of clone detection is to generate a node set

for a given Java method5. As shown in Step 1 of Fig. 2,

our approach takes the source code of a Java method as input.

ANTLR [3] is used to obtain an AST for each input method.

Then we conduct depth first search (DFS) to traverse the ASTs

and obtain a tree-node set for each AST. During the traversing,

the stop nodes are removed. For example in Fig. 2, each row,

e.g., {Nm1, ..., Nmnm
}, is a tree-node set generated for the

AST (and thus the corresponding method) indexed m. Suppose

we have m methods in the project to be checked, then we

obtain m such tree-node sets.

C. Step 2: Generate Tree Vector

In the second step, we generate a vector for each AST.

Motivated by the works in NLP community, we adopt the

sentence to vector method [14] to obtain a vector for an AST

(method) from its node vectors. In our approach, the structure

information is captured during the pre-processing phrase, i.e.,

while conducting node vector embedding. Therefore, we adopt

a light-weight sentence embedding approach, in which no

order information of the AST nodes is preserved.

4This naming is inspired by the stop words.
5Our approach operates on AST intermediate nodes. Therefore, the gener-

ated tree-node set represents the method information.

For each AST, the sentence to vector method [14] obtains a

vector by applying sentence embedding. In sentence embed-

ding, each node corresponds to a word in a sentence and each

AST (composed of a set of nodes) corresponds to a sentence.

The nodes are converted to vectors by looking into the node

vector dictionary obtained from the pre-processing step. After

the sentence embedding step, we obtain one vector for each

AST. For example in Fig. 2, the set of nodes {Nm1, ..., Nmnm}
for AST m are converted to the tree vector MVm.

D. Step 3: Code Clone Detection

After step 2, we obtain one vector for each AST. The

vector captures the structure information of the corresponding

method. Moreover, since Skip-gram considers context infor-

mation and encodes such information into the vectors. There-

fore, contextually similar nodes have similar vector represen-

tations. Based on this property, we can detect clone pairs based

on the Euclidean distance [19] of the vectors. In addition, in

the process of vector comparison, we use Locality Sensitive

Hashing (LSH) [20] algorithm to improve the efficiency of

comparison. We determine whether two pieces of code are

cloned based on the vector distance.

Since the vectors generated by the ASTs of exact clone

(Type-1 clone) and parametric clone (Type-2 clone) are exactly

the same, the Euclidean distance of the vectors is zero. For

Type-3 clone, the code structure may change due to code

fragments insertion, deletion and modification. Therefore, the

Euclidean distance of the tree vectors may increase. We need

to set a threshold of the Euclidean distance, below which the

compared methods are identified as Type-3 clones. Since there

is no quantitative definition on Type-3 clones that we can refer

to decide the distance threshold, we set our threshold based

on experiments with existing clone benchmarks. We manually

labelled 7 large Java project, with more than 70 thousand lines

of code. These labelled projects are used to tune the threshold

for Type-3 clones. Through manual inspection on the results,

we select a threshold 0.02 which achieves a good precision

and recall as our base threshold. Vector distance below this

threshold is identified as Type-3 clones.

When tuning the threshold, we observe that there are cases

where the code is changed in a few lines, e.g., adding an

if-else structure, but the number of AST nodes are changed

by a large portion (especially if the original method has a

small number lines of codes). The resulting sentence vectors

may have a large distance. The reason is that the number of

intermediate nodes generated for the if-else statements is large

and they dramatically affect the obtained tree vector. To solve

this problem, rather than using a fixed threshold value for

vector distance comparisons, we propose to use an adjustable

threshold value. The intuition is to add the information of the

proportion of code changes at the token level as a factor (α)

of the base threshold (θbase). The factor (α) affects the base

threshold (θbase) in a way such that the effect of structure

changes on small code pieces may be mitigated. The factor

α is computed by accumulating the line based Levenshtein

distance [39] (on source code).

150

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Dataset Information

Data Set # Files # LOC # Methods

JDK 1.2.2 [5] 109 17, 140 1, 028
OpenNLP 1.8.1 [9] 850 66, 291 3, 748

Maven 3.5.0 [8] 872 79, 840 5, 309
Ant 1.10.1 [6] 1, 205 138,505 12, 620

Commons Lang 3-3.7 [7] 311 75, 210 6, 404
jEdit 5.4.0 [1] 592 118,407 7,160

BigCloneBench [63] 32, 317 8, 836, 676 168, 965

TABLE II: Settings of Clone Detection Tools

Tool Min LOC Criteria for Clone

TECCD min 10LOC 0.02
CCLearner min 10LOC lc ≥ 0.98
CCAligner min 10LOC 60% similarity

NICAD min 10LOC 70% similarity

IV. IMPLEMENTATION AND EVALUATION

We implement our approach in a tool called TECCD . We

use ANTLR (version 4.7.1) [3] to obtain AST from source

code. The Skip-gram model [4] is adopted to convert an AST

node into a vector and the sent2vec [14] model is adopted to

generate a vector for each method. Our tool is public available

at our GitHub project [2].

A. Experiment Setup

Dataset Selection In order to verify the effectiveness and

efficiency of our approach, we use 7 large-scale open source

Java projects and the BigCloneBench [63] as experimental

data sets. The detailed information of the datasets is shown

in Table I. Each project in the dataset contains a few hundred

files, with the number of methods ranging from one thousand

to twelve thousands. We manually labelled all the clone

pairs of the first 7 and make them a code clone benchmark,

which is available [10]. The BigCloneBench (BCB) [63] is

a manually crafted benchmark for (especially Type-3 and

Type-4) clones and is a widely adopted benchmark for code

clone detection methods. It consists of more than 3 million

manually labelled clone pairs. BCB typifies the clones and

measure their syntactical similarity. As there is no consensus

on the minimum similarity of a Type-3 clone, BigCloneBench

distinguishes Type-3 and Type-4 clones by dividing them

into three categories, i.e., the clones that share at least 70%

similarity at the statement level is regarded as strong Type-3

clones; the clones having 50-70%, less than 50% shared syntax

similarity are regarded as moderate Type-3 clones, weak Type-

3 (Type-4) clones, respectively.

Comparison Methods Selection In our experiment, we com-

pare our tool TECCD with existing state-of-the-art clone

detection tools on both effectiveness and efficiency. For effec-

tiveness comparison, we choose NICAD [56], CCLearner [40]

and CCAligner [66], which have demonstrated state-of-the-art

performances in Type-3 clone detection. NICAD is a classic

and effective text-based clone detection tool, which has been

shown to be effective in detecting near-miss clones. CCLearner

adopts deep learning method for clone detection, which share

similar idea with TECCD . CCAligner is one of the newest

clone detection tools, which has also shown to be effective

to detect Type-3 clones, especially large-gap clones. Recently,

RNN-based methods [69], [18] are proposed to conduct code

clone detections. These methods share similar ideas with our

approach and would be interesting to compare with. However,

to the best of our knowledge, the source codes of those

approaches are not public accessible and thus we are unable

to compare with those methods. We also explicitly evaluate

the efficiency of our approach, and compare our tool with

Deckard [29]6, which is a popular tree-based clone detection

method, on a large dataset.

Experiment environment configuration We conduct our

experiment on a machine with CentOS 7 operating system,

Intel (R) Xeon (R) CPU E5− 2640v3@ 2.60 GHz and 128 G

memory. Before proceeding with the experiment, we need to

configure each tool consistently. The detection granularity is

chosen at the code method level. To make a fair comparison,

we use 10 LOC as the minimum threshold to be considered

as clone candidates for all 4 tools, following the the default

setting for NICAD and CCAligner. We remark that, our tool

TECCD can be configured to detect clones of any number of

LOC. In our experiment, we use the default configurations

of each tool to decide code clones. This is shown in the

third column of Table II. Our method TECCD uses Euclidean

distance to detect clones, and the base threshold is set to 0.02.

CCLearner implements a neural network with two hidden

layers. It calculates the similarity between the number and

type of tokens in two pieces of code, and then classifies them

based on the trained neural network model. CCLearner set lc
≥ 0.98, which is the predicted probability, as the threshold to

detect clones. Nicad is a text-based character-matching LCS

algorithm to detect clones and 70% is the threshold as reported

in the paper [56]. CCAligner is a token-based code cloning

detection method, which can detect large-gap clone (a special

Type-3 code clone). It uses q = 6 (the window size), e = 1
(the edit distance threshold) as the default setting for detecting

clone pairs, and the similarity threshold is set to be 60%.

Based on our observations with the BigCloneBench [63],

there are no Type-3 (and definitely Type-1 or 2) clones with

2.5 times or more differences in line numbers. Therefore, in

our experiment, we avoid comparing such kind of code pairs.

This is a commonly used heuristics in code clone detection

methods [40].

B. Experimental Result

Clone Detection Effectiveness Evaluation We run all the

clone detection tools with settings shown in Table II on all

the datasets shown in Table I. The results on the effectiveness

comparison of clone detection are reported in Table III and

TableIV. In Table III, the first 2 columns show the data sets

and the tools. columns 3− 8 show the results for Type-1 and

Type-2 clone detection. Columns 9− 14 show the results for

6CCLearner has shown to outperform Deckard and thus we directly
compare with CCLearner on effectiveness.

151

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Comparison Results on 6 Projects

Data Set Tool
Type-1, Type-2 Clone Type-3 Clone Time

Pairs TP FP Precision Recall F1 # Pairs TP FP Precision recall F1 Preproc Detection

JDK 1.2.2
TECCD 21 21 0 100 100 100 57 48 9 84 87 85 35s 3s

Nicad 16 16 0 100 76 86 26 25 1 96 45 61 2s
CCLearner 19 19 0 100 90 95 70 51 19 73 93 82 2s
CCAligner 21 21 0 100 100 100 54 45 9 83 82 82 1s

Maven 3.5.0
TECCD 5113 5113 0 100 100 100 1924 1750 174 91 93 92 76s 15s

Nicad 436 436 0 100 9 17 601 540 61 90 29 44 9s
CCLearner 4437 4437 0 100 87 93 1548 1243 305 80 66 72 10s
CCAligner 5021 5021 0 100 98 99 1558 1409 149 90 75 82 4s

OpenNLP 1.8.1
TECCD 613 613 0 100 100 100 1462 1374 88 94 95 94 79s 16s

Nicad 200 200 0 100 33 50 648 632 16 98 43 60 8s
CCLearner 584 584 0 100 95 97 1612 1271 341 79 87 83 9s
CCAligner 604 604 0 100 99 99 1341 1204 137 90 82 86 3s

Ant 1.10.1
TECCD 443 443 0 100 100 100 1092 1015 77 93 91 92 148s 65s

Nicad 141 141 0 100 32 48 519 495 24 95 44 60 16s
CCLearner 439 439 0 100 99 99 1221 914 307 75 82 78 20s
CCAligner 176 176 0 100 40 57 755 709 46 94 64 76 6s

jEdit 5.4.0
TECCD 224 224 0 100 100 100 1118 1028 90 92 92 92 193s 54s

Nicad 124 124 0 100 55 71 845 626 219 74 56 64 16s
CCLearner 209 209 0 100 93 96 1275 1050 225 82 94 88 8s
CCAligner 197 197 0 100 88 94 1560 1089 471 70 97 81 5s

Commons Lang 3-3.7
TECCD 1440 1440 0 100 100 100 3180 2779 483 87 92 89 73s 24s

Nicad 1007 1007 0 100 70 82 1098 1084 14 99 36 53 13s
CCLearner 1348 1348 0 100 94 97 2859 2368 491 83 78 80 11s
CCAligner 1200 1200 0 100 83 91 1652 1445 207 87 48 62 5s

TABLE IV: Results for the BigCloneBench

Tool Recall Precision
T1 T2 VST3 ST3 MT3 WT3/T4

TECCD 100 96 99 87 23 0 88
CCLearner 100 96 98 87 27 0 84
CCAligner 100 95 98 76 0 0 72

NICAD 99 95 98 92 0 0 86

Type-3 clone detection. # Pairs is the number of clone pairs

detected. TP, FP are the number of true and false positives of

the corresponding methods’ detection results. Precision, Recall
and F1 are the precision, recall and F1-Score values (in terms

of percentage), respectively.

From Table III we can see that, all of the tools can achieve

100% precision for Type-1 and Type-2 clones. TECCD

performs the best in terms of recall. CCLearner and

CCAligner also achieves good results. Nicad has the

lowest recall on all datasets. Through manual checking on the

experiment results, we find that Nicad has little tolerance

on term changes. Therefore, it misses many Type-2 clones

which have term changes. Type-1 and Type-2 clones have

clear definitions and are relatively easier to detect. In general,

TECCD is stable and more capable of detecting Type-1 and

Type-2 clones. This is because Type-1 and Type-2 clones do

not involve structure changes, and thus they always show a

vector distance of 0. TECCD performs the best, CCLearner
also performs well, and is more stable than CCAligner and

Nicad.

For Type-3 clones, TECCD shows a consistently good

performance on both precision and recall. Nicad tends to

show relatively good precision, but bad recall. This is for

the same reason as Type-1 and Type-2 clones explained

before. CCAligner performs well on the JDK and OpenNLP
datasets, but its performance is not stable on the other datasets,

as indicated by the F1-Scores. Especially on the Ant and

Commons Lang projects, the recall scores are 76% and 64%,

respectively. the source code of these projects, we find that, the

low scores are due to the default choices of edit distance e = 1
and windows size q = 6 to be the default setting, which shows

the best performance. With such a setting, it cannot detect the

cases where more than 2 lines are changed in the window

block. There are many such cases in the Ant and Commons
Lang projects. Therefore, CCAligner has a bad recall on

this two datasets. CCLearner shows a stable, yet relatively

worse performance compared to TECCD and CCAligner.

The main reason may be that CCLearner uses program terms

as training set, which is project-dependent and the effective-

ness is affected by the training set. Moreover, only different

types of tokens are counted, there is no structure information

preserved. This may also be a reason for CCLearner to miss

some clones, especially the large-gap clones.

To test how our approach generalize to other projects, we

use the BigCloneBench [63], which is a manually crafted

clone benchmark for all types of clones. The BigCloneBench

clone pairs are selected from real programs without mutation

operations, therefore, they represent real world code clones.

The evaluation results with the BigCloneBench is shown in

Table IV. The recall is calculated with the BigCloneEval [64],

which automatically queries the BigCloneBench database

for labelled results. The columns T1, T2, VST3, ST3,
MT3, WT3/T4 represent Type-1, Type-2, Strong Type-3,

Medium Type-3, Weak Type-3/Type-4 clones, respectively. We

can observe from the results, TECCD achieve near 100%
recall for T1, T2 and VST3 clones, and TECCD outperforms

all the other compared tools for these types of clones. Note that

TECCD as well as the other three tools do not achieve a 100%
accuracy, because the BigCloneBench labelling insufficienes,

which has also been reported in other works [40]. NICAD

performs well on ST3 clones, but poorly on MT3 clones.

CCAlighner shows a worse performance than NICAD on

ST3 and MT3 clones. TECCD and CCLearner shows good

performance on ST3 clones. For MT3 clones, CCLearner and

152

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

TECCD both perform better than CCAlighner and NICAD,

and CCLearner is a little better. Note that CCLearner is trained

on more than 10K files taken from the BigCloneBench, but

TECCD does not require training in the detection phrase. For

precision, for the known reason that the BigCloneBench is not

suffciently labelled, and it is infeasible to conduct a manual

checking on all the clone pairs, we adopt the same approach as

existing works [40] to sample a (statistically significant) subset

of detected clone pairs from each tool and manually check

the precision of the corresponding clone detection method.

The sample size is 385, which is a statistically significant

sample size with a 95% confidence level and [−5%, 5%]
confidence interval. The results are shown in the last column

of Figure IV. TECCD achieves the best precision compared

to other methods.

Clone Detection Efficiency Evaluation We report the exe-

cution time of the different clone detection methods in the

last column of Table III. It takes TECCD 4.5 hours in total

to generate the node dictionary, which is one-time effort. For

TECCD , the Preproc column shows the time for AST

generation, and the Detection column shows the time for

the other steps of clone detection. For the other methods, since

they are not tree based, there is no preprocessing required. For

TECCD , majority time is spent on AST generation, which

is a known drawback for tree-based clone detection methods.

For detection, TECCD uses a bit more time than existing

token-based approaches, but is comparable. Note that since our

tool TECCD achieves higher recall, which means potentially

more clone pairs are required to be processed. Therefore, it is

reasonable that more time is consumed.

To further evaluate the efficiency of our tool, we also

compare TECCD with the state-of-the-art tree-based clone

detection tools Deckard [29] on a large folder of the Big-

CloneBench, which consists of more 2, 688, 875 lines of code.

The results show that TECCD uses 490min to finish the

processing, while Deckard takes 2071min, which is more

than 4 times of TECCD . The evaluation results show that

TECCD is compatible with non-tree-based method in terms of

execution time and is more efficient than tree-based methods.

V. THREATS TO VALIDITY

Context Information In our approach, we conduct random

walk on AST to obtain the context information of nodes.

Different from the Node2vec [26] approach, which only takes

the context sequences of one graph as input, our approach

takes the context sequences obtained from all ASTs as input

to learn a node vector dictionary. When using the window to

cut grams for training, there may exist cross-method grams,

i.e., nodes from two different trees are put into one node gram.

There are similar situations in processing natural language

sentences, where words in a gram are obtained from the end of

the previous sentence and the start of the next sentence. This

kind of grams are taken as sentence-level context information

in the natural language domain, while the neighbouring of two

methods may not necessarily show context information in our

approach. This may affect the training accuracy as this kind

of node gram is not the real intended context.

Parameter Tuning There are certain parameters adopted in

our approach, such as the vector dimensions, threshold for

clone detection, and α, which are manually tuned. In our

current setting, the parameters are tuned with some of the

evaluation datasets, and the parameters which show best per-

formance are used as the default setting. This is a commonly

adopted practice for parameter tuning, although the parameters

may be biased due to the dataset selection. To mitigate this

effect, in the evaluation, we test our method (with tuned

parameters) on the BigCloneBench, which is not involved

in parameter tuning, and the evaluation results show that

our method outperforms the other methods. Therefore, our

parameter configuration is generalizable to some extend.

Evaluation with the BigCloneBench The BigCloneBench

has known label deficiencies, i.e., it does not label all true

clones. Therefore, the evaluation results on BigCloneBench is

conducted on a partially labelled set, which may result in the

measured recall be different from the actual recall. Moreover,

the precision is calculated on a randomly sampled set of

detected clones, which may introduce human bias or uninten-

tional errors. We ask two master students to cross validate the

results to decrease the potential risks. A crowdsourcing task

may be a proper way to solve this issue and this is subject to

our future improvement.

VI. RELATED WORK

Token-based approach Token-based methods [41], [36], rely

on lexical analysers to convert the source code into token

sequences. Similar to the text-based approaches, the obtained

token sequences are treated as strings. Then string matching

algorithms are adopted to locate the lines where the cloned

code exists. CCFinder [28] is one of the classic token-based

detection approach. After converting the source code into

token sequences, CCFinder uses suffix tree matching algorithm

to detect similar token sequences. Livieri et al. [43] proposes

a distributed method for large-scale code clone analysis. The

method is implemented into a distributed version of CCFinder

named D-CCFinder [43]. Basit et al. [15] proposes a simple

and flexible tokenize method, and then uses a memory efficient

suffix array for clone detection. SourcererCC [61] is a near-

miss clone detector. SourcererCC is based on token, and it

proposes the partial index algorithm and filtering heuristics

to reduce the frequency and quantity of tokens required for

detecting clones. Token-based detection algorithms can detect

clones that involve different line structures, which cannot be

detected by text-based detection algorithms. However, neither

of the two methods fully consider the structure or semantic

information of the code, and thus they can not detect most

Type-3 and Type-4 clones, especially those with multi-line

modifications and “dislocation”.

Tree-based approach In tree-based code clone detection

methods [71], [60], the source code is first parsed into parsing

153

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

tree [24] or abstract syntax tree (AST) [16]. Then tree match-

ing algorithms are used to search similar subtrees, and the

corresponding source code of the detected subtree is returned

as the detected clone code. Feng et al. [22] introduces an AST-

based method called AST-CC. The method first calculates the

hash value of each node in AST. Then it compares the hash

value of AST nodes to detect Type-3 clones. Deckard [29] is

a tree-based clone detector, which approximates the structure

information of ASTs by calculating certain characteristic vec-

tors, and then use Locality Sensitive Hashing (LSH) to cluster

the similar vectors. The code corresponding to the vectors

that fall in the same cluster are considered clones. Wahler

et al. [65] proposes to represent the source code as an AST in

XML format. Because the generated trees contain the complete

structure information of the source code, tree-based detection

method shows capability in detecting both exact and near-miss

clones. However, tree-based methods have high time and space

overhead. Therefore, they are not suitable for analysing clones

of large source code repositories.

Machine learning-based approaches With the rapid devel-

opment of deep learning techniques [38], there have been

approaches [52], [62], [67] proposed using machine learning

methods to conduct code clone detection. White et al. [69]

first proposes a deep learning-based clone detection method

that locates clones by extracting features from program tokens.

This method adopts RtNN [46] to map each term in a frag-

ment to an embedding, and then transfers lexical information

from the leaf to the root of the structure with RvNN [25].

The method requires converting an AST into a binary tree,

which is time consuming. Moreover, a large training dataset

is required since this method conduct embedding on terms

(which are program specific). Wei et al. [67] designs a su-

pervised deep feature learning framework, CDLH, to detect

function similar clone. They apply traditional LSTM [72] on

AST structure, and use the AST-based LSTM to generate

real-valued representation of the source code, then the hash

function is used to encode them as binary hash codes. Finally,

they calculate the Hamming distance of hash codes to detect

clone. Gemini [70] is the first neural network-based method

to generate embedding of binary function. The binary code of

the method is represented by ACFG and updated iteratively

based on graph embedding network. Finally, the embedding

vector of the method is obtained. Code2Vec [12] proposes

a path-based attention model by studying the set of paths

between one leaf node and another leaf node in AST as code

representation. The learnt code representation is then used to

predict method names across projects. CCLearner [40] is a

token-based clone detection tool which adopts deep learning

algorithms. It first classifies tokens in source code into eight

categories and calculates the similarity score for each category

of the two code snippets. Then it characterizes the relationship

between the methods with the calculated similarity vectors.

CCLearner extracts tokens from labeled cloned and non-cloned

code sets, feeds them to a deep neural network (DNN) [11]

to train a clone detection classifier. CCLearner requires a set

of labelled cloned or non-cloned code, which is not easy to

obtain. The accuracy of the trained model also depends on

the training data. Due to the diversity of code clones, it is

not easy to obtain a large labelled data set that cover different

kinds of clones. Our approach adopts unsupervised training

techniques, which does not require manually labelling and thus

is not restricted by the training dataset. We adopt tree-based

method to capture the structural information of the code. The

experiment results shows that our method TECCD has higher

precision and recall than CCLearner.

Other approaches Text-based code clone detection meth-

ods [30], [21], [31], [68] usually transfer source code into

strings and then compare the characteristics of the corre-

sponding strings. Murakami et al. [51] proposes a method

detecting contiguous and gaped code clones based on Smith-

Waterman algorithm, and implements the detection tool

CDSW. NICAD [56] is a text-based hybrid clone detection

tool. It first performs code normalization and then exploits the

Longest Common Subsequence (LCS) comparison algorithm

to identify clone. Text-based clone detection algorithms have

high space-time efficiency. However, most text-based code

clone detection techniques can only detect Type-1 clones [31],

[21]. The graph-based code clone detection methods [23], [37]

usually convert the source code into the form of graphs, such

as Program Dependence Graph (PDG). The subgraphs with

similarities above the detection threshold are selected as clone

pairs. On the basis of the PDG, Liu et al. [42] adopts program

slicing techniques to find isomorphic subgraphs. Graph-based

detection technology can detect Type-4 clones. However, the

algorithm for constructing a graph and matching subgraphs

have high computational complexity. Metric-based code clone

detection methods [35] [44] [34] extract a set of metrics from

program source code, and then detect code clone based on the

similarity of the metric values. Metric-based detection methods

are efficient. However, the metric usually can only represent

a part of program information, which makes the accuracy of

the detection methods relatively low.

VII. CONCLUSION

We introduce a tree embedding technique to conduct code

clone detection. Our approach first conducts tree embedding

to obtain a node vector for each intermediate node in the AST.

The node embeddings capture the context/structure informa-

tion of ASTs. Then we compose a tree vector from its node

vectors using a lightweight method. Lastly Euclidean distances

between tree vectors are measured to determine code clones.

We implement our approach in a tool called TECCD and

conduct an evaluation with 7 large Java projects as well as the

BigCloneBench (BCB). The results show that our approach

outperforms existing approaches on accuracy and recall and is

comparable with existing approaches in performance.

ACKNOWLEDGMENT

The paper is supported by National Science Foundation

61872263, 61802275, U1836214, and Tianjin Science and

Technology Committee AI Key Project 17ZXRGGX00150.

154

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] http://www.jedit.org/.
[2] https://github.com/YangLin-George/TECCD.
[3] http://www.antlr.org/tools.html.
[4] http://www.thushv.com/natural language processing/

word2vec-part-1-nlp-with-deep-learning-with-tensorflow-skip-gram/.
[5] https://www.oracle.com/technetwork/java/javase/downloads/index.html.
[6] https://ant.apache.org/.
[7] https://commons.apache.org/proper/commons-lang/.
[8] https://maven.apache.org/.
[9] https://opennlp.apache.org/.

[10] https://github.com/clonebench/BigCloneBench.
[11] https://deeplearning4j.org/neuralnet-overview.
[12] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec:

Learning distributed representations of code. 2018.
[13] Ryota Ami and Hirohide Haga. Code clone detection method based

on the combination of tree-based and token-based methods. Journal of
Software Engineering & Applications, 10(13):891–906, 2017.

[14] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-
beat baseline for s. 2016.

[15] Hamid Abdul Basit and Stan Jarzabek. Efficient token based clone
detection with flexible tokenization. In Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pages
513–516. ACM, 2007.

[16] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and
Lorraine Bier. Clone detection using abstract syntax trees. In Software
Maintenance, 1998. Proceedings., International Conference on, pages
368–377. IEEE, 1998.

[17] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and evaluation of clone detection tools. IEEE
Transactions on software engineering, 33(9), 2007.

[18] Lutz Büch and Artur Andrzejak. Learning-based recursive aggregation
of abstract syntax trees for code clone detection. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 95–104. IEEE, 2019.

[19] Per Erik Danielsson. Euclidean distance mapping. Computer Graphics
Image Processing, 14(3):227–248, 1980.

[20] Mayur Datar, Piotr Indyk, Nicole Immorlica, and Vahab S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions. In
Twentieth Symposium on Computational Geometry, 2004.

[21] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language
independent approach for detecting duplicated code. In Software Main-
tenance, 1999.(ICSM’99) Proceedings. IEEE International Conference
on, pages 109–118. IEEE, 1999.

[22] Jianglang Feng, Baojiang Cui, and Kunfeng Xia. A code comparison
algorithm based on ast for plagiarism detection. In Emerging Intelli-
gent Data and Web Technologies (EIDWT), 2013 Fourth International
Conference on, pages 393–397. IEEE, 2013.

[23] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of
semantic clones. In Proceedings of the 30th international conference on
Software engineering, pages 321–330. ACM, 2008.

[24] David Gitchell and Nicholas Tran. Sim: a utility for detecting similarity
in computer programs. In ACM SIGCSE Bulletin, volume 31, pages
266–270. ACM, 1999.

[25] Christoph Goller and Andreas Kuchler. Learning task-dependent dis-
tributed representations by backpropagation through structure. In IEEE
International Conference on Neural Networks, pages 347–352 vol.1,
2002.

[26] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864.
ACM, 2016.

[27] G. E. Hinton. Visualizing high-dimensional data using t-sne. Journal of
Machine Learning Research, 9(2):2579–2605, 2008.

[28] Katsuro Inoue. Ccfinder: a multilinguistic token-based code clone
detection system for large scale source code. Annual report of Osaka
University: academic achievement, 2001:22–25, 2002.

[29] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane
Glondu. Deckard: Scalable and accurate tree-based detection of code
clones. In Proceedings of the 29th international conference on Software
Engineering, pages 96–105. IEEE Computer Society, 2007.

[30] J. Howard Johnson. Identifying redundancy in source code using
fingerprints. In Conference of the Centre for Advanced Studies on
Collaborative Research: Software Engineering, pages 171–183, 1993.

[31] J Howard Johnson. Substring matching for clone detection and change
tracking. In ICSM, volume 94, pages 120–126, 1994.

[32] Cory J Kapser and Michael W Godfrey. cloning considered harmful
considered harmful: patterns of cloning in software. Empirical Software
Engineering, 13(6):645, 2008.

[33] Egambaram Kodhai and Selvadurai Kanmani. Method-level code clone
detection through lwh (light weight hybrid) approach. Journal of
Software Engineering Research & Development, 2(1):12, 2014.

[34] Kostas Kontogiannis. Evaluation experiments on the detection of
programming patterns using software metrics. In Reverse Engineering,
1997. Proceedings of the Fourth Working Conference on, pages 44–54.
IEEE, 1997.

[35] Kostas A Kontogiannis, Renator DeMori, Ettore Merlo, Michael Galler,
and Morris Bernstein. Pattern matching for clone and concept detection.
Automated Software Engineering, 3(1-2):77–108, 1996.

[36] Rainer Koschke. Incremental clone detection. In European Conference
on Software Maintenance and Reengineering, pages 219–228, 2009.

[37] Jens Krinke. Identifying similar code with program dependence graphs.
In Reverse Engineering, 2001. Proceedings. Eighth Working Conference
on, pages 301–309. IEEE, 2001.

[38] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436, 2015.

[39] Vladimir I Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, volume 10, pages
707–710, 1966.

[40] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder.
Cclearner: A deep learning-based clone detection approach. In Software
Maintenance and Evolution (ICSME), 2017 IEEE International Confer-
ence on, pages 249–260. IEEE, 2017.

[41] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale software code. IEEE
Transactions on software Engineering, 32(3):176–192, 2006.

[42] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. Gplag: detection
of software plagiarism by program dependence graph analysis. In
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 872–881. ACM, 2006.

[43] Simone Livieri, Yoshiki Higo, Makoto Matushita, and Katsuro Inoue.
Very-large scale code clone analysis and visualization of open source
programs using distributed ccfinder: D-ccfinder. In Software Engineer-
ing, 2007. ICSE 2007. 29th International Conference on, pages 106–115.
IEEE, 2007.

[44] Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on
the automatic detection of function clones in a software system using
metrics. In icsm, volume 96, page 244, 1996.

[45] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[46] Tomas Mikolov, Martin Karafit, Lukas Burget, Jan Cernock, and Sanjeev
Khudanpur. Recurrent neural network based language model. In INTER-
SPEECH 2010, Conference of the International Speech Communication
Association, Makuhari, Chiba, Japan, September, pages 1045–1048,
2010.

[47] Narcisa Andreea Milea, Lingxiao Jiang, and Siau-Cheng Khoo. Scalable
detection of missed cross-function refactorings. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, pages
138–148. ACM, 2014.

[48] Narcisa Andreea Milea, Lingxiao Jiang, and Siau-Cheng Khoo. Vector
abstraction and concretization for scalable detection of refactorings. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 86–97. ACM, 2014.

[49] Manishankar Mondal, Md Saidur Rahman, Ripon K Saha, Chanchal K
Roy, Jens Krinke, and Kevin A Schneider. An empirical study of the
impacts of clones in software maintenance. In Program Comprehension
(ICPC), 2011 IEEE 19th International Conference on, pages 242–245.
IEEE, 2011.

[50] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi Sato, and
Ken-ichi Matsumoto. Software quality analysis by code clones in
industrial legacy software. In Software Metrics, 2002. Proceedings.
Eighth IEEE Symposium on, pages 87–94. IEEE, 2002.

[51] Hiroaki Murakami, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and
Shinji Kusumoto. Gapped code clone detection with lightweight source

155

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

code analysis. In Program Comprehension (ICPC), 2013 IEEE 21st
International Conference on, pages 93–102. IEEE, 2013.

[52] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang
Liu, and Santhoshkumar Saminathan. subgraph2vec: Learning dis-
tributed representations of rooted sub-graphs from large graphs. 2016.

[53] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 701–710. ACM, 2014.

[54] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software clone
detection: A systematic review. Information and Software Technology,
55(7):1165–1199, 2013.

[55] Matthias Rieger. Effective clone detection without language barriers.
PhD thesis, Verlag nicht ermittelbar, 2005.

[56] Chanchal K Roy and James R Cordy. Nicad: Accurate detection
of near-miss intentional clones using flexible pretty-printing and code
normalization. In Program Comprehension, 2008. ICPC 2008. The 16th
IEEE International Conference on, pages 172–181. IEEE, 2008.

[57] Chanchal K Roy, James R Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative
approach. Science of computer programming, 74(7):470–495, 2009.

[58] Chanchal K Roy, Minhaz F Zibran, and Rainer Koschke. The vision
of software clone management: Past, present, and future (keynote
paper). In 2014 Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
pages 18–33. IEEE, 2014.

[59] Chanchal Kumar Roy and James R Cordy. A survey on software clone
detection research. Queens School of Computing TR, 541(115):64–68,
2007.

[60] Tobias Sager. Detecting similar java classes using tree algorithms. In
International Workshop on Mining Software Repositories, pages 65–71,
2006.

[61] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and
Cristina V. Lopes. Sourcerercc:scaling code clone detection to big-code.
In Ieee/acm International Conference on Software Engineering, pages
1157–1168, 2016.

[62] Abdullah Sheneamer, Swarup Roy, and Jugal Kalita. A detection
framework for semantic code clones and obfuscated code. Expert
Systems with Applications, 97, 2017.

[63] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy,
and Mohammad Mamun Mia. Towards a big data curated benchmark of
inter-project code clones. In IEEE International Conference on Software
Maintenance Evolution, 2014.

[64] Jeffrey Svajlenko and Chanchal K Roy. Bigcloneeval: A clone detection
tool evaluation framework with bigclonebench. In 2016 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
pages 596–600. IEEE, 2016.

[65] Vera Wahler, Dietmar Seipel, J Wolff, and Gregor Fischer. Clone
detection in source code by frequent itemset techniques. In Source Code
Analysis and Manipulation, 2004. Fourth IEEE International Workshop
on, pages 128–135. IEEE, 2004.

[66] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chan-
chal K Roy. Ccaligner: a token based large-gap clone detector. In Pro-
ceedings of the 40th International Conference on Software Engineering,
pages 1066–1077. ACM, 2018.

[67] Huihui Wei and Ming Li. Supervised deep features for software func-
tional clone detection by exploiting lexical and syntactical information in
source code. In Twenty-Sixth International Joint Conference on Artificial
Intelligence, pages 3034–3040, 2017.

[68] Richard Wettel and Radu Marinescu. Archeology of code duplication:
Recovering duplication chains from small duplication fragments. In
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, page 8 pp., 2006.

[69] Martin White, Michele Tufano, Christopher Vendome, and Denys
Poshyvanyk. Deep learning code fragments for code clone detection.
In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pages 87–98. ACM, 2016.

[70] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. [acm press the 2017 acm sigsac conference - dallas, texas,
usa (2017.10.30-2017.11.03)] proceedings of the 2017 acm sigsac con-
ference on computer and communications security - ccs 1̈7 - neural
network-based graph embedding for cross-platform binary code. 2017.

[71] Wuu Yang. Identifying syntactic differences between two programs.
Software Practice & Experience, 21(7):739–755, 1991.

[72] Wojciech Zaremba and Ilya Sutskever. Learning to execute. Eprint
Arxiv, 2014.

156

Authorized licensed use limited to: Drexel University. Downloaded on September 26,2020 at 22:13:28 UTC from IEEE Xplore. Restrictions apply.

